Integrated Molecular Genetic Profiling of Pediatric High-Grade Gliomas Reveals Key Differences With the Adult Disease

See accompanying article on page 3054

ABSTRACT

Purpose
To define copy number alterations and gene expression signatures underlying pediatric high-grade glioma (HGG).

Patients and Methods
We conducted a high-resolution analysis of genomic imbalances in 78 de novo pediatric HGGs, including seven diffuse intrinsic pontine gliomas, and 10 HGGs arising in children who received cranial irradiation for a previous cancer using single nucleotide polymorphism microarray analysis. Gene expression was analyzed with gene expression microarrays for 53 tumors. Results were compared with publicly available data from adult tumors.

Results
Significant differences in copy number alterations distinguish childhood and adult glioblastoma. PDGFRA was the predominant target of focal amplification in childhood HGG, including diffuse intrinsic pontine gliomas, and gene expression analyses supported an important role for deregulated PDGFRA signaling in pediatric HGG. No IDH1 hotspot mutations were found in pediatric tumors, highlighting molecular differences with adult secondary glioblastoma. Pediatric and adult glioblastomas were clearly distinguished by frequent gain of chromosome 1q (30% vs 9%, respectively) and lower frequency of chromosome 7 gain (13% vs 74%, respectively) and 10q loss (35% vs 80%, respectively). PDGFRA amplification and 1q gain occurred at significantly higher frequency in irradiation-induced tumors, suggesting that these are initiating events in childhood gliomagenesis. A subset of pediatric HGGs showed minimal copy number changes.

Conclusion
Integrated molecular profiling showed substantial differences in the molecular features underlying pediatric and adult HGG, indicating that findings in adult tumors cannot be simply extrapolated to younger patients. PDGFRA may be a useful target for pediatric HGG, including diffuse pontine gliomas.

INTRODUCTION

High-grade gliomas (HGGs) comprise 15% to 20% of all childhood tumors of the CNS, and 70% to 90% of patients die within 2 years of diagnosis. Consequently, improved understanding of pediatric HGG to identify relevant therapeutic targets is essential.

The frequency, anatomic location, and pathologic spectrum of gliomas differ in children and adults, suggesting that the representation of progenitor and mature cell types, as well as the microenvironment within the developing brain, may influence the disease process. Glioblastomas dominate adult disease, whereas juvenile pilocytic astrocytomas are the most common brain tumors in children. Pediatric glioblastomas often arise in brain regions that are rarely targeted in adult disease. In adults, most low-grade diffuse gliomas undergo anaplastic progression to a high-grade tumor over time, but progression of pediatric low-grade diffuse gliomas is rare.

Array-based studies of adult glioblastoma identified common regions of genomic gain and loss and gene expression signatures, allowing molecular subclassification of tumors. Comprehensive studies integrating copy number, gene expression, and mutation analyses reported that virtually all glioblastomas have disrupted the p53,
PI3K/receptor tyrosine kinase (RTK), and RB pathways through various genetic mechanisms.12,13

By comparison, pediatric HGG is an understudied disease. Specific genetic alterations underlying pediatric HGG were defined primarily by directed analyses of genes that are mutated in the more common adult HGG. Mutations in TP53, CDKN2A, and PIK3CA are common in both adult and pediatric HGG.14-16 PTEN mutations and EGFR amplifications, which are frequent in adult primary glioblastoma, are less common in pediatric HGGs, which also arise de novo.15,17 Two disease subsets of pediatric glioblastoma with differential survival that were distinguishable from adult glioblastoma were identified based on expression signatures.18 Array-based copy number studies of pediatric HGG using relatively small sample sizes supported a difference between childhood and adult tumors.19,20

Here, we provide, to our knowledge, the first report of a high-resolution unbiased analysis of genomic imbalances and gene expression signatures in a large collection of pediatric HGGs. We show that HGGs in children and adults are a related spectrum of disease driven by significantly different frequencies of genomic alterations.

PATIENTS AND METHODS

Samples and Nucleic Acid Extraction

We analyzed snap-frozen HGG specimens from 78 pediatric patients (< 23 years old) from St Jude Children’s Research Hospital (Memphis, TN) and the Children’s Cancer and Leukemia Group in the United Kingdom (Data Supplement). Ethical review committee approval was obtained from each institution/consortium. All tumors were collected before adjuvant therapy for the glioma including 10 gliomas that arose in patients who previously received irradiation (IR) for a different cancer (IR-induced tumors). Sections from matched formalin-fixed paraffin-embedded tissue were reviewed by neuropathologists (D.W.E. and J.L.). DNA extraction and, when sufficient material was available, RNA extraction and tissue smears were performed as described.21

Copy Number, mRNA Expression Profiling, and Statistical Analyses

DNA was labeled and hybridized to Affymetrix 500K GeneChips (Affymetrix, Santa Clara, CA). Fifty-three tumor samples with qualified RNA were profiled using Affymetrix Human Genome U133 Plus 2.0 arrays. Details of single nucleotide polymorphism data analyses, validation by quantitative polymerase chain reaction (Data Supplement) and FISH, and expression and statistical analyses are provided in the Appendix (online only). Array data are deposited at the Gene Expression Omnibus Web site (http://www.ncbi.nlm.nih.gov/geo/, accession No. GSE19578).

RESULTS

Comprehensive Mapping of Copy Number Changes in Pediatric HGG

We used Affymetrix 500K GeneChips to identify copy number imbalances in 58 WHO grade 4 tumors and 20 WHO grade 3 pediatric HGGs (Data Supplement). Genomic Identification of Significant Targets in Cancer (GISTIC)22 was used to identify significant copy number aberrations (Fig 1). We excluded the 10 IR-induced tumors from the GISTIC analysis. To define candidate pediatric HGG cancer genes, we mapped regions of focal high-level amplification (copy number > five) or likely homozygous deletion (focal loss with copy number < 0.8), after exclusion for normal copy number variation (Data Supplement).

Recurrent broad low-amplitude gains of chromosome 1q and focal high-amplitude gains encompassing PDGFRA were observed at the highest frequency (29% and 12%, respectively; Fig 1A). The minimal common region of focal amplification was restricted to PDGFRA, which was consistently overexpressed when amplified (Fig 2, Data
Supplement). Other significant gains were found in only 1% to 4% of tumors, with significance scores driven by high-level amplification (Fig 1A). Additional amplified genes included those encoding cell cycle progression proteins (CCND2, CDK4, MYC, and MYCN), RTKs and ligands (EGFR, MET, PDGFB, and NRG1), members of the PI3K pathway (PIK3C2B, PIK3C2G, PIK3R5, KRAS, AKT1, and S6K1), and p53 pathway regulation (MDM4; Data Supplement).

In contrast, most of the significant losses involved broad regions including chromosomes 10q (38%), 13q (34%), and 14q (29%; Fig 1B). The only narrow peak of high significance identified focal homozygous deletion encompassing CDKN2A/CDKN2B in 19% of tumors and was associated with absent expression of both genes (Data Supplement). Additional homozygous deletions of tumor suppressor genes of known importance in glioma included CDKN2C, NF1, PTEN, RB1, TP53, and TP73, reflecting abrogation of common signaling pathways,12,13 and the tyrosine phosphatase PTPRD.23,24 Further candidates included other tyrosine phosphatases (PTPRE and PTPN2), DNA repair genes (ATR, TOPBP1, and KU80), and members of the Notch pathway (DLKI and NEDD4L; Data Supplement).

Seven glioblastoma samples were diffuse intrinsic pontine gliomas, an understudied tumor type that is rarely biopsied.1 Focal amplification of PDGFRA was observed in two (29%) of seven of these tumors. Copy number imbalances in this subgroup were not significantly different from other glioblastomas (P > .1 for gains or losses of all individual chromosome arms, PDGFRA amplification, and CDKN2A deletion; Data Supplement).

Overall, there was an average of 5.7 large regions of copy number imbalance per tumor (median, four regions; range, zero to 23 regions), with no difference between histologies or grade of tumor (P > .3; Data Supplement). The total numbers of large-scale gains and losses per tumor were not significantly different in IR-induced tumors (P > .19, nonparametric Wilcoxon test). However, specific gains of chromosome 1q and 9q and losses of 13q and 1p were significantly more frequent in IR-induced tumors compared with the rest of the HGGs (Table 1; P = .03, P = .01, P = .04, and P = .01, respectively). All other copy number imbalances for individual chromosomal arms were not significantly different between IR-induced tumors and other HGGs (P > .1, Fisher’s exact test). One hundred ninety-six regions with focal aberrations were observed, comprising 66 amplifications and 130 deletions. Focal amplifications of PDGFRA and deletions of CDKN2A/B were significantly more common in IR-induced tumors (Table 1; P = .01 and P = .05, respectively).
tions at codon 132 strongly distinguish adult secondary from primary glioblastoma, with frequencies of 85% compared with 5%, respectively.12,23-28 We sequenced IDH1 exon 4, containing codon 132, from 78 pediatric HGGs and 11 pediatric low-grade gliomas. No codon 132 mutations were detected, consistent with previous reports showing only rare IDH1 mutations in smaller collections of pediatric HGGs.26,28 The only IDH1 alterations found in our pediatric collection were in HGG153, which contained two missense mutations in trans, encoding R49C and G97D, which were not found in the matched germline DNA (Data Supplement), and focal homozygous deletion encompassing IDH1 in HGG10. The absence of hotspot mutations in IDH1 strongly distinguished pediatric HGG from adult secondary glioblastoma.

Although the majority of pediatric HGGs showed multiple genomic imbalances, 15 tumors in our collection showed relatively stable genomes (Data Supplement). Tissue smears from the frozen sample used for DNA and RNA extraction were available for nine of 15 stable samples, and seven of nine smears showed greater than 75% tumor cells (reviewed by D.W.E.), strongly suggesting that the tumor samples were of sufficient purity to detect copy number imbalances. Normal tissue within primary tumor samples can mask detection of copy number imbalances, especially homozygous deletions.29 Some of the stable cases showed conclusive evidence of minimal contaminating normal tissue by detection of homozygous deletions, loss of heterozygosity, and point mutations (Data Supplement). Thus, a subset of pediatric HGGs showed minimal copy number imbalances in relatively pure tumor samples.

Expression Profiling of Pediatric HGG Identifies Three Major Subclasses

We analyzed gene expression profiles from 53 of the tumors in our collection. Unsupervised hierarchical clustering identified three main tumor subgroups (HC1 to HC3; Data Supplement). Gene ontology analysis of upregulated genes that most discriminate each subgroup from the others (Data Supplement) showed the most significantly overexpressed genes were associated with cell cycle regulation in HC1, with neuronal differentiation in HC2, and with extracellular matrix–receptor interactions and cell adhesion in HC3. We used gene set enrichment analysis to show that these pediatric subgroups significantly recapitulated subgroups previously defined in adult HGG, termed proliferative (Prolif), proneural (PN), and mesenchymal (Mes)9 (Data Supplement).

We integrated genomic copy number imbalances with this expression subgroup classification (Fig 3). Most common abnormalities were distributed across subgroups. However, seven (88%) of eight of the amplifications targeting the PDGFR signaling cascade through PDGFRα and/or PDGFRβ were found in the Prolif/HC1 subgroup (association with this subgroup, odds ratio \(= 8.44, P = .05\)), implicating this pathway as a strong driver of proliferation in childhood tumors. Gain of 1q was found at high frequency in the Prolif/HC1 tumors (52%) and the PN/HC2 group (23%) but was significantly under-represented in the Mes/HC3 subclass (8%; odds ratio = 0.12; \(P = .04\), Fisher’s exact test).

Supervised comparison of glioblastomas to anaplastic astrocytomas showed significantly increased expression of genes associated with angiogenesis in glioblastoma, a strong molecular signature relating to the microvascular proliferation that is characteristic of these tumors (Data Supplement). Gene expression profiles were available

Pediatric HGG Genome Overlaps With, but Is Distinct From, Primary and Secondary Adult Glioblastoma

We compared imbalances in pediatric HGG with published findings on copy number changes in adult glioblastoma. We considered frequencies in all pediatric HGG and pediatric glioblastoma alone, excluding variant glioblastomas, for comparison with adult glioblastoma (Table 1 and Data Supplement). Pediatric glioblastomas were clearly distinguished from adult glioblastomas by frequent gain of chromosome 1q and the paucity of chromosome 7 gains and 10q losses. The most frequent focal amplifications differ, with PDGFRα and EGFR predominant in childhood and adult populations, respectively. In contrast, the frequencies of 13q and 14q loss were similar between pediatric and adult glioblastoma. Copy number imbalances were not significantly different between pediatric glioblastomas and all de novo pediatric HGG (\(P > .2\); Table 1).

In adults, secondary glioblastomas show overexpression or amplification of PDGFRα but rarely contain EGFR amplification,5 suggesting that pediatric HGG with PDGFRα amplification may be molecularly similar to adult secondary glioblastoma. IDH1 mutations at codon 132 strongly distinguish adult secondary from primary glioblastoma, with frequencies of 85% compared with 5%, respectively.12,23-28 We sequenced IDH1 exon 4, containing codon 132, from 78 pediatric HGGs and 11 pediatric low-grade gliomas. No codon 132 mutations were detected, consistent with previous reports showing only rare IDH1 mutations in smaller collections of pediatric HGGs.26,28 The only IDH1 alterations found in our pediatric collection were in HGG153, which contained two missense mutations in trans, encoding R49C and G97D, which were not found in the matched germline DNA (Data Supplement), and focal homozygous deletion encompassing IDH1 in HGG10. The absence of hotspot mutations in IDH1 strongly distinguished pediatric HGG from adult secondary glioblastoma.

Although the majority of pediatric HGGs showed multiple genomic imbalances, 15 tumors in our collection showed relatively stable genomes (Data Supplement). Tissue smears from the frozen sample used for DNA and RNA extraction were available for nine of 15 stable samples, and seven of nine smears showed greater than 75% tumor cells (reviewed by D.W.E.), strongly suggesting that the tumor samples were of sufficient purity to detect copy number imbalances. Normal tissue within primary tumor samples can mask detection of copy number imbalances, especially homozygous deletions.29 Some of the stable cases showed conclusive evidence of minimal contaminating normal tissue by detection of homozygous deletions, loss of heterozygosity, and point mutations (Data Supplement). Thus, a subset of pediatric HGGs showed minimal copy number imbalances in relatively pure tumor samples.

Expression Profiling of Pediatric HGG Identifies Three Major Subclasses

We analyzed gene expression profiles from 53 of the tumors in our collection. Unsupervised hierarchical clustering identified three main tumor subgroups (HC1 to HC3; Data Supplement). Gene ontology analysis of upregulated genes that most discriminate each subgroup from the others (Data Supplement) showed the most significantly overexpressed genes were associated with cell cycle regulation in HC1, with neuronal differentiation in HC2, and with extracellular matrix–receptor interactions and cell adhesion in HC3. We used gene set enrichment analysis to show that these pediatric subgroups significantly recapitulated subgroups previously defined in adult HGG, termed proliferative (Prolif), proneural (PN), and mesenchymal (Mes)9 (Data Supplement).

We integrated genomic copy number imbalances with this expression subgroup classification (Fig 3). Most common abnormalities were distributed across subgroups. However, seven (88%) of eight of the amplifications targeting the PDGFR signaling cascade through PDGFRα and/or PDGFRβ were found in the Prolif/HC1 subgroup (association with this subgroup, odds ratio = 8.44, \(P = .05\)), implicating this pathway as a strong driver of proliferation in childhood tumors. Gain of 1q was found at high frequency in the Prolif/HC1 tumors (52%) and the PN/HC2 group (23%) but was significantly under-represented in the Mes/HC3 subclass (8%; odds ratio = 0.12; \(P = .04\), Fisher’s exact test).

Supervised comparison of glioblastomas to anaplastic astrocytomas showed significantly increased expression of genes associated with angiogenesis in glioblastoma, a strong molecular signature relating to the microvascular proliferation that is characteristic of these tumors (Data Supplement). Gene expression profiles were available

| Table 1. Copy Number Changes in Pediatric and Adult HGG |
|---------------------------------|----------------|-----------------|----------------|-----------------|
| **Percent** | **Pediatric** | **Pediatric** | **Pediatric** | **Adult** |
| **Region** | **HGG** | **GBM** | **GBM** | **GBM** |
| **(n = 10)** | **(n = 68)** | **(n = 48)** | **(n = 189)** |
| **Gains** | % | % | % | % |
| 1q | 70 | 29 | 30 | 9 | <.001 |
| 7 | 0 | 15 | 13 | 74 | <.001 |
| 9p | 40 | 7 | 9 | 8 | 1.00 |
| **Losses** | % | % | % | % |
| 1p | 50 | 12 | 9 | 2 | .05 |
| 4q | 20 | 21 | 22 | 2 | <.001 |
| 9p | 20 | 18 | 17 | 33 | <.05 |
| 10q | 20 | 38 | 35 | 80 | <.001 |
| 13q | 70 | 34 | 35 | 31 | .7 |
| 14q | 40 | 29 | 28 | 26 | .9 |
| 16q | 20 | 22 | 24 | 7 | .003 |
| 22q | 0 | 19 | 15 | 23 | .13 |
| **Frequent focal changes** | % | % | % | % |
| PDGFRα | 50 | 12 | 17 | 11| .2 |
| EGFR | 0 | 3 | 0 | 43| <.001 |
| CDKN2A | 50 | 19 | 20 | 55| <.001 |

Abbreviations: IR, irradiation; HGG, high-grade glioma; GBM, glioblastoma.

*Pediatric HGG arising in patients who previously received cranial irradiation for a different cancer.

†Includes all HGG tumor subtypes, except tumors with previous IR.

‡Pediatric GBMs only, excluding tumors with previous IR.

§Adult GBM copy number data were downloaded from The Cancer Genome Atlas (TCGA). Data for 189 samples analyzed on the SNP6 platform were available (February 2009) and used for large-scale gain and loss comparison. For focal gene aberrations, the data for 206 adult GBMs from TCGA were used.

†Includes all HGG tumor subtypes, except tumors with previous IR.

‡Pediatric GBMs only, excluding tumors with previous IR.

§Adult GBM copy number data were downloaded from The Cancer Genome Atlas (TCGA). Data for 189 samples analyzed on the SNP6 platform were available (February 2009) and used for large-scale gain and loss comparison. For focal gene aberrations, the data for 206 adult GBMs from TCGA were used.

Frequent focal changes

PDGFRα: 50%, 12%, 17%, 11%

EGFR: 0%, 3%, 0%, 43%

CDKN2A: 50%, 19%, 20%, 55%

Percent

© 2010 by American Society of Clinical Oncology. All rights reserved.
from nine of 15 tumors showing overall genomic stability, and they were represented in each expression subgroup (Fig 3). As a group, tumors with a stable genome showed decreased expression of genes associated with cell cycle and DNA repair (Data Supplement).

Patients with HGG younger than age 3 years have a better prognosis than older children.30 None of the 11 infant HGGs showed chromosome 1q gain, a significant difference compared with HGGs from older children (P = .03). At the gene expression level, infant tumor gene expression profiles were heterogeneous, distributing among all three expression subclasses (Fig 3). Infant HGGs overexpressed genes involved in nervous system development and calcium ion binding and showed coordinated underexpression of multiple HOX genes when compared with HGGs from older children (Data Supplement).

As a group, IR-induced tumors significantly overexpressed genes relating to control of gene expression and metabolic processes compared with other pediatric HGGs (Data Supplement). There was significant over-representation of genes that mapped to chromosome 1q (P < .001) and the region of amplification encompassing PDGFRA (P < .001), reflecting the higher incidence of these copy number gains in IR-induced tumors.

Integrated Molecular Profiling of Pediatric High-Grade Glioma

Differential Gene Expression Signature Drivers in Pediatric Versus Adult HGG

We performed a principal component analysis (PCA) using data from our pediatric glioblastomas and adult glioblastomas that were analyzed on the same platform (n = 32,22,31 Fig 4). The first component of the PCA is predominantly associated with differences between the PN, Prolif, and Mes subgroups found in both pediatric and adult tumors. However, the second principal component shows a trend separating pediatric and adult tumors. Consistent with differences in frequencies of amplification, PDGFRA was significantly overexpressed (q = 0.000002) and EGRF was significantly repressed in pediatric tumors (q = 0.0003; Data Supplement). Gene ontology analysis highlighted over-represented pathways among the differentially expressed genes, including immune response, response to extracellular stimulus, cell adhesion, cytokine- and chemokine-mediated signaling pathways, and calcium-mediated pathways.

To determine whether gene expression signatures of pediatric HGG more closely resemble the smaller subset of adult glioblastomas with PDGFRA amplification, we identified gene sets distinguishing adult glioblastomas with PDGFRA amplification from those with EGRF amplification using published data23 (Data Supplement) and applied gene set enrichment analysis to the combined data from our pediatric collection and the adult glioblastoma data set used in Figure 4. Pediatric glioblastomas, regardless of PDGFRA amplification status, show significantly increased expression of the gene set upregulated in adult PDGFRA-amplified tumors (Fig 5A), whereas the gene set that is upregulated in adult EGRF-amplified tumors is downregulated in pediatric HGG as well as the adult PN subclass (Fig 5B). The adult PN subclass also shows overexpression of certain genes within the adult PDGFRA-amplified gene set, although these genes comprise a distinct subset compared with those upregulated in pediatric HGG (Fig 5A; Data Supplement). Notably, one adult tumor from a 53-year-old patient was similar to pediatric tumors in expression of the TCGA PDGFRA gene set and showed similar positioning to pediatric tumors in the PCA analysis (Figs 4 and 5). The subset of the PDGFRA-amplified gene set that showed the greatest enrichment in pediatric HGG more closely resemble the smaller subset of adult glioblastomas...
compared with adult glioblastoma was associated with cell cycle regulation and multicellular organizational development.

DISCUSSION

The high-resolution analysis of copy number and gene expression signatures reported here demonstrates that pediatric and adult HGGs represent a related spectrum of disease distinguished by differences in the frequency of copy number changes, in specific gene expression signatures, and by the absence of *IDH1* hotspot mutations. In pediatric HGG, numerous genes within the p53, PI3K/RTK, and RB pathways are targeted by focal gain or loss (Data Supplement), but with the exception of *PDGFRα* and *CDKN2A*, other alterations were found only at low frequency.

Although the majority of pediatric HGGs in our series showed multiple genomic imbalances, a subgroup of tumors (15 of 78 tumors, 19%) lacked large-scale copy number changes. Other childhood tumors show subsets with balanced genomic profiles including ependymoma and CNS supratentorial primitive neuroectodermal tumors, Ewing sarcoma, and Wilms tumor. Tumors with balanced genomes may possess an inherited or acquired predisposition for generating copy neutral mutations, such as the subset of colorectal cancers that arise in the context of DNA mismatch repair. Alternatively, relatively fewer mutations may be required to drive the disease, as in pediatric acute myeloid leukemias, which show low frequency copy number imbalances and sequence alterations.

Frequent gain of chromosome 1q clearly distinguished childhood from adult HGG and showed corresponding upregulation of gene expression involving the whole chromosomal arm, precluding identification of a focal target. A similar pattern of differential gain of 1q in childhood compared with adult brain tumors is seen in ependymoma, and gain of 1q is common in other pediatric malignancies.

PDGFRα is the predominant target of focal amplification in pediatric HGG, in contrast to adult glioblastoma, where *EGFR* is the most common target. Previous studies have suggested that overexpression may be an alternative mechanism of activating *EGFR* in childhood glioblastoma. However, we found that *EGFR* was significantly underexpressed in pediatric compared with adult glioblastoma. The gene expression signature of adult tumors associated with *EGFR* amplification was relatively underexpressed in pediatric glioblastoma, whereas the gene expression signature associated with *PDGFRα* amplification was significantly overexpressed in pediatric glioblastomas, even in tumors that did not show amplification of the gene. Overall, both the copy number and gene expression analyses suggest that *PDGFRα* may be an important therapeutic target for pediatric HGG, including diffuse intrinsic pontine gliomas. A small subset of pediatric glioblastomas within the Mes subgroup appeared similar to adult tumors of the same subgroup when evaluated by PCA (Fig 4). The median age of onset for these tumors was 11.6 years, and one tumor was from an infant, so this similarity is independent of age. Interestingly, the gene expression signatures in this subset of pediatric tumors also showed the greatest similarity to adult glioblastomas with *EGFR* amplification (Fig 5B) and may indicate a small pediatric subgroup in which *EGFR* inhibitors may have a greater effect.

The preferential targeting of *PDGFRα* and *EGFR* in pediatric and adult HGG, respectively, suggests that the developing brain is more susceptible to oncogenic transformation triggered by aberrant PDGFR signaling. These differences may reflect changes in the populations of cell types expressing the growth factor receptors and their ligands during development and differentiation and complex regulation causing different cellular responses to activated signaling of the receptors. Both growth factor receptors play important roles in nervous system development and lineage commitment. Mouse models suggest that aberrant PDGFR signaling, but not EGFR activation, was sufficient to trigger glioma formation. This is consistent with observations in human tumors where *EGFR* amplifications are rare in lower grade gliomas, whereas PDGF and PDGFR overexpression/amplification are found in both low-grade and high-grade astrocytomas, suggesting that activated PDGFR signaling is an early event in gliomagenesis.

Mutations that cause tumor initiation will lead to tumor formation more rapidly by expanding the pool of available cells that may acquire additional mutations. This may be particularly relevant in
early disease onset in children. Ten tumors in our study arose in patients previously treated for another cancer with cranial IR (IR induced), a mutagenic exposure that increases the risk of brain tumors. IR-induced tumors were similar to other pediatric HGGs, with gene expression profiles distinguishing them from adult glioblastomas by PCA (Fig 4) and in histopathologic features. The increased incidence of chromosome 1q gain and PDGFRA amplifications seen in IR-induced HGG may reflect radiation-induced initiating mutations that greatly increase the likelihood of developing childhood HGG. The same mutations also confer a strong selective advantage in pediatric HGG tumors arising spontaneously. Many pediatric HGG that lack amplification of PDGFRα or PDGFB still show strong expression of the gene signatures associated with PDGFRα amplification (Fig 5A), supporting the hypothesis that this pathway plays a central role in pediatric HGG and may be activated by multiple mechanisms.

AUTHORS’ DISCLOSURES OF POTENTIAL CONFLICTS OF INTEREST

The author(s) indicated no potential conflicts of interest.

REFERENCES

AUTHOR CONTRIBUTIONS

Conception and design: Barbara S. Paugh, Chunxu Qu, Zhaoli Liu, David W. Ellison, Richard G. Grundy, Suzanne J. Baker
Financial support: Amar Gajjar, Richard G. Grundy, Suzanne J. Baker
Administrative support: Amar Gajjar
Collection of study materials or patients: Chris Jones, Darren Hargrave, Amar Gajjar, Alberto Broniscer, David W. Ellison, Richard Grundy
Data analysis and interpretation: Barbara S. Paugh, Chunxu Qu, Chris Jones, Zhaoli Liu, Martyna Adamowicz-Brice, Dorina A. Bax, Beth Coyle, Jennifer Barrow, James Lowe, Wei Zhao, David W. Ellison, Richard G. Grundy, Suzanne J. Baker
Manuscript writing: Barbara S. Paugh, Chunxu Qu, Chris Jones, David W. Ellison, Richard G. Grundy, Suzanne J. Baker
Final approval of manuscript: Barbara S. Paugh, Chunxu Qu, Chris Jones, Zhaoli Liu, Martyna Adamowicz-Brice, Junyuan Zhang, Dorina A. Bax, Beth Coyle, Jennifer Barrow, Darren Hargrave, James Lowe, Amar Gajjar, Wei Zhao, Alberto Broniscer, David W. Ellison, Richard G. Grundy, Suzanne J. Baker

The author(s) indicated no potential conflicts of interest.

www.jco.org

© 2010 by American Society of Clinical Oncology

3967

Downloaded from jco.ascopubs.org on September 27, 2016. For personal use only. No other uses without permission.
Copyright © 2010 American Society of Clinical Oncology. All rights reserved.

3967
43. Clifford SC, O’Toole K, Ellison DW: Chromosome 1q gain is not associated with a poor outcome in childhood medulloblastoma: Requirements for the validation of potential prognostic biomarkers. Cell Cycle 8:787, 2009